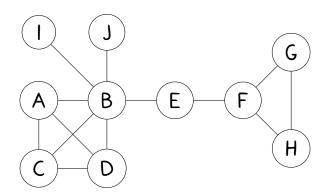
## Who's the Big Cheese in the University Clubs?

You're new at a university and want to understand social dynamics of students. Here's the club membership information:

| Club           | Members                  |
|----------------|--------------------------|
| Drama Club     | Sarah, Mike, Emma        |
| Art Club       | Emma, Alex               |
| Volunteer Club | Alex, Olivia, James      |
| Sailing Club   | Alex, Sophia             |
| Chess Club     | Sophia, Ėthan, Ava, Noah |
| Debate Team    | Noah, Lily               |
| Math Club      | Noah, Lucas              |
| Tennis Club    | Noah, Henry              |


Question 1: Draw a network where students are nodes and edges connect students in the same club.

Question 2: Without doing any calculations, which student would you approach first if you wanted to spread information quickly about a new inter-club event? Explain your reasoning.

Question 3: Without doing any calculations, which student would you recommend to be the "Club Coordinator" to help communication between different clubs? Explain your reasoning.

Question 3: How might this network change if a new Robotics Club is formed, and Noan and Emma join it? How would this affect your answers to the previous questions?

## Question 4: Let's consider the following network:



Which node has the highest degree (most connections)?

## Question 5:

Nodes B, E, and F are likely the most central, being closest to all other nodes. Fill in the following table the distance from nodes B, E, and F to all nodes, and find the one with the shortest average distance.

|   | Α | В | C | D | E | F | G | Н | 1 | J | AVG |
|---|---|---|---|---|---|---|---|---|---|---|-----|
| В |   |   |   |   |   |   |   |   |   |   |     |
| E |   |   |   |   |   |   |   |   |   |   |     |
| F |   |   |   |   |   |   |   |   |   |   |     |

Question 6: Another way to think of centrality is based on how many shortest paths pass through a node. For example, F appears in 14 shortest paths: from G and H (2 nodes) to A-E, I, and J (7 nodes). Count the number of shortest paths that pass through nodes B and E. Which node is the most central by this measure?

Question 7: Going back to the school club network, which student would you approach first if you wanted to spread information quickly about a new inter-club event?

Question 8: Which student would you recommend to be the "Club Co-ordinator" to help communication between different clubs?

Question 9: How would the network change if a new Robotics Club is formed, and Noan and Emma join it? How would this affect your answers to the previous questions?