
Building Your Code Time Machine
A Discovery Exercise

The Problem
You’re working on a data analysis project. You have a file called analysis.py. Over the
course of a week, you make many changes. Sometimes you break things. Sometimes
you fix them. Sometimes you want to remember what you did yesterday.
This exercise will help you discover a system for tracking your work.

1 Part 1: Saving Your Work

1.1 Your First Day
You start with this code in analysis.py:

def calculate_mean(data):
total = sum(data)
return total / len(data)

1. You realize this code crashes when data is empty. You fix it:

def calculate_mean(data):
if len(data) == 0:

return 0
total = sum(data)
return total / len(data)

Write down exactly what changed (use + prefix for lines added, - prefix for lines
removed):

2. Later that day, you add a new function:

1



def calculate_mean(data):
if len(data) == 0:

return 0
total = sum(data)
return total / len(data)

def calculate_median(data):
sorted_data = sorted(data)
return sorted_data[len(sorted_data) // 2]

Write down what changed this time (use + prefix for lines added, - prefix for
lines removed):

1.2 Choosing What to Save
You spend all morning working. You now have:

• analysis.py (finished, working perfectly)

• test.py (finished, working perfectly)

• scratch.py (messy experimental code, not ready)

• temp_output.txt (temporary file, you don’t need it)

3. You want to create a snapshot. Should you include all four files?

4. You realize you need a way to choose which files go into a snapshot. Design a
system with three areas:

Area 1:
All your files

Area 2:
?

Area 3:
Saved snapshots

What should Area 2 be? What purpose does it serve? (Hint: Think about the
problem you encountered with the four files earlier)

2



5. You have a file in Area 1 that you want to include in your next snapshot. What
would you call the action of moving it to Area 2?

You have files in Area 2 and you want to create a snapshot in Area 3 containing
those files. What would you call this action?

6. Why is it useful to have Area 2 instead of going directly from Area 1 to Area 3?

2 Part 2: Parallel Work

2.1 The Experiment Dilemma

You want to try two completely different approaches to analyzing your data. You don’t
know which will work better. You want to try both without losing either one.
Your current snapshot history represents your stable, working code. This is the path
that always works:

S1 S2 S3

Started Fixed bug Added median

stable path

7. You want to try Method A and Method B starting from S3. Both will modify
analysis.py. You want to keep the stable path stable and working. If you just
keep making snapshots in a straight line on the stable path, what problem will
you run into?

8. Starting from S3 on the stable path, you want to create snapshots for both
Method A and Method B without losing either one or breaking the stable path.

3



Draw what your snapshot history should look like. How can you arrange the
snapshots so you can experiment with both methods while keeping the stable
path stable?

3 Part 3: Hands-On with Git
Now let’s use actual Git commands to implement the system you designed. You’ll create
a repository, make commits, work with branches, and collaborate.

3.1 Setup

Installing Git:

• macOS: Open Terminal and type git --version. If not installed, it will prompt
you to install.

• Windows: Download from https://git-scm.com/download/win and install. Use
Git Bash for commands.

3.2 Exercise: Your First Repository

Open your terminal (macOS) or Git Bash (Windows) and follow these steps:

9. Create a project folder and initialize Git:

mkdir my-project
cd my-project
git init

What did git init do? Check by running ls -a (macOS) or dir /a (Windows).
You should see a .git folder.

4

https://git-scm.com/download/win


10. Create your first file and make a snapshot (commit):

echo "print('Hello, Git!')" > hello.py
git add hello.py
git commit -m "Add hello script"

Which part of your three-area system does git add implement? Which part
does git commit implement?

11. Create a branch for experiments:

git branch experiment
git checkout experiment
echo "print('Experimental feature')" >> hello.py
git add hello.py
git commit -m "Add experimental feature"

What does git branch do? What does git checkout do? How does this relate
to the parallel paths you designed?

12. Switch back to the main branch and check your file:

git checkout main
cat hello.py

(Use type hello.py instead of cat on Windows)
What do you notice about the contents of hello.py? Why does it look different
from when you were on the experiment branch?

13. Merge your experiment into main:

5



git merge experiment
cat hello.py

What happened to hello.py? How does this relate to combining work from
different paths?

14. Setup remote repository (GitHub):
Create a free account at https://github.com if you don’t have one. Then create
a new repository called my-project (empty, no README).
GitHub will show you commands. They’ll look like this:

git remote add origin https://github.com/YOUR-USERNAME/my-project.git
git push -u origin main

What does git remote add do? What does git push do? How does this relate
to the backup server concept?

15. Make a change on GitHub and pull it:
Go to your repository on GitHub. Click on hello.py and click the pencil icon to
edit. Add a new line:
print("Edited on GitHub")
Click ”Commit changes” at the bottom. Then in your terminal:

git pull
cat hello.py

What does git pull do? How is this different from git push?

6

https://github.com


4 Git
The system you just designed and used is called Git. Here are the real names for the
concepts you discovered:

• Snapshot = Commit

• Area 2 (choosing what to save) = Staging Area

• Parallel paths = Branches

• Combining work = Merge

16. Now that you know the real names, write a short description of what Git is and
why it’s useful:

7


	Part 1: Saving Your Work
	Your First Day
	Designing a Tracking System
	Choosing What to Save

	Part 2: Parallel Work
	The Experiment Dilemma

	Part 3: Hands-On with Git
	Setup
	Exercise: Your First Repository

	Git

