1 Image Processing and Convolution

1.1 Preparation: Understanding Convolution

Think of convolution as a way to find patterns in an image by looking through a small
window (kernel). As we slide this window across the image, we:

1. Look at a small neighborhood of pixels

2. Multiplg each pixel by the corresponding value in our pottern-matching window

(kernel)
3. Sum up these products to get a single number

4. Move the window and repeat

For exomple, if we want to detect vertical edges, we might use this kernel:
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Let's see how it works on a small image region (3x3 pixels):
10 80 10
10 80 10
10 80 10
We multiply each pixel by the corresponding kernel value and sum: (10 x —1+80 x 1+

10 x 0) x 3 = 210. The high positive value (210) indicates a strong vertical edge was
detected. Here are some common kernel patterns:
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Blur/Smoothing:

Averages all neighboring pixels
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1.2 Image Processing and Convolution

Consider a 6x6 grayscale image showing a diagonal line pattern:
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1. If we want to detect diagonal edges, which kernel of size 3x3 would be most
appropriote? The kernel should have the values between -1 and 1.

2. Applg your kernel to compute the convoluted image. No need to calculate the
value of each pixel exactly but show your estimate by shading the pixels. For
the boundary pixels, leave them blank since the kernel exceeds the boundary of

the image.

3. Now, let’s learn how JPEG compression works. Consider this waves:

Wave 1: sin(x)

Wave 2: sin(2z)
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We combine these two waves by weighting the first wave by 1.5 and the second
wave by 0.5. Combined Wave = 1.5 - sin(z) + 0.5 - sin(2z). Draw the combined

waves.



y  Combined Wave

4. The Fourier transform is a reverse operation: it decomposes, not combines,
waves into basic waves. The waves are continuous functions. But we can dis-
cretize them for computation as follows:

Y Continuous wave z[n] Discrete signal
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This results in a vector of values [10, 80, 10, 80, 10, 80, 10, 80]. Now, let’s create a
discretized mixed wave Z from X and Y as follows

Z =X +Y = [10,90, 30,90, 10, 70, — 10, 70, 10] 1)
where

X = [10, 80,10, 80, 10, 80, 10,80, 10], Y = [0,10,20, 10,0, —10, —20, —10,0] (2)

(a) If we apply a kernel K = [—1,1, —1] to this signal, what will be the resulting
signal? What kind of frequencies will this kernel emphasize?

(c) f we apply a kernel K = [1,1,1] to this signal, what will be the resulting
signal? What kind of frequencies will this kernel emphasize?



5. Just as 1D signals can be decomposed into sine waves, 2D images can be de-
composed into 2D waves as follows. The Fourier transform can be applied to 2D
images to decompose them into a sum of 2D waves.

Horizontal (Low freq.) Vertical (Low freq.)

Horizontal (High freq.)  Vertical (High freq.) Diagonal (High freq.)

Now, consider this checkerboard pattern on the left. Mark where you expect the
highest magnitudes in the Fourier transform grid. The dashed circles represent
the basis 2D waves in the Fourier domain.
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Fourier Transform Grid

6. The image can be mapped to the Fourier transform grid (called frequency do-
main). We can also map it back to the original image domain (called spatial
domain). Thus, we can manipulate the image in the frequency domain to remove
some waves from the original image. If we want to keep only the low-frequency
components of the checkerboard pattern, what regions of the Fourier transform
grid should we set to zero?
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