Open In Colab

Computing centrality with Python#

Network of university students#

Let’s compute the centrality of the network using Python igraph.

# Uncomment if you use Colab
#!pip install igraph
import igraph
names  = ['Sarah', 'Mike', 'Emma', 'Alex', 'Olivia', 'James', 'Sophia', 'Ethan', 'Ava', 'Noah', 'Lily', 'Lucas', 'Henry']
edge_list = [(0, 1), (0, 2), (1, 2), (2, 3), (3, 4), (3, 5), (3, 6), (4, 5), (6, 7), (6, 8), (6, 9), (7, 8), (7, 9), (8, 9), (9, 10), (9, 11), (9, 12)]
g = igraph.Graph()
g.add_vertices(13)
g.vs["name"] = names
g.add_edges(edge_list)
igraph.plot(g, vertex_label=g.vs["name"])
../_images/a32d9cd303eda85a7a3068704392f7bfa2f7254a489534704880c26073722afb.svg

igraph offers a wide range of centrality measures as methods of the igraph.Graph class.

  • Degree centrality: igraph.Graph.degree()

  • Closeness centrality: igraph.Graph.closeness()

  • Betweenness centrality: igraph.Graph.betweenness()

  • Harmonic centrality: igraph.Graph.harmonic_centrality()

  • Eccentricity: igraph.Graph.eccentricity()

  • Eigenvector centrality: igraph.Graph.eigenvector_centrality()

  • PageRank centrality: igraph.Graph.personalized_pagerank()

For example, the closeness centrality is computed by

g.closeness()
[0.3,
 0.3,
 0.4,
 0.5217391304347826,
 0.36363636363636365,
 0.36363636363636365,
 0.5454545454545454,
 0.42857142857142855,
 0.42857142857142855,
 0.48,
 0.3333333333333333,
 0.3333333333333333,
 0.3333333333333333]

Computing Katz centrality#

Let’s compute the Katz centrality without using igraph. Let us first define the adjacency matrix of the graph

A = g.get_adjacency_sparse()

which is the scipy CSR sparse matrix. The Katz centrality is given by

\[\mathbf{c} = \beta \mathbf{1} + \alpha \mathbf{A} \mathbf{c}\]

So, how do we solve this? We can use a linear solver but here we will use a simple method:

  1. Initialize \(\mathbf{c}\) with a random vector.

  2. Compute the right hand side of the equation and update \(\mathbf{c}\).

  3. Repeat the process until \(\mathbf{c}\) converges.

Let’s implement this.

import numpy as np

alpha, beta = 0.1, 0.05 # Hyperparameters
n_nodes = g.vcount() # number of nodes
c = np.random.rand(n_nodes, 1) # column random vector

for _ in range(100):
    c_next = beta * np.ones((n_nodes, 1)) + alpha * A * c
    if np.linalg.norm(c_next - c) < 1e-6:
        break
    c = c_next
print(c)
[[0.06338729]
 [0.06338729]
 [0.07048543]
 [0.07807918]
 [0.06423108]
 [0.06423108]
 [0.08184309]
 [0.07474496]
 [0.07474496]
 [0.09085938]
 [0.05908602]
 [0.05908602]
 [0.05908602]]
  • Does the centrality converge?

  • Change the hyperparameter and see how the result changes 😉 If the centrality diverges, think about why it diverges.

Hint: Katz centrality can be analytically computed by

\[\mathbf{c} = \beta \left(\mathbf{I} - \alpha \mathbf{A} \right)^{-1} \mathbf{1}\]

Exercise (Optional)#

Compute the PageRank centrality of this graph

Network of ancient Roman roads#

Load the data & construct the network#

import pandas as pd

root = "https://raw.githubusercontent.com/skojaku/adv-net-sci/main/data/roman-roads"
node_table = pd.read_csv(f"{root}/node_table.csv")
edge_table = pd.read_csv(f"{root}/edge_table.csv")

The node table:

node_table.head(3)
node_id lon lat
0 0 12.506 41.875
1 1 12.470 41.904
2 2 12.471 41.881

The edge table:

edge_table.head(3)
src trg
0 1785 358
1 1785 1771
2 1771 350

Let’s construct a network from the node and edge tables.

import igraph

g = igraph.Graph() # create an empty graph
g.add_vertices(node_table["node_id"].values) # add nodes
g.add_edges(list(zip(edge_table["src"].values, edge_table["trg"].values))) # add edges

which looks like this:

coord = list(zip(node_table["lon"].values, -node_table["lat"].values))
igraph.plot(g, layout = coord, vertex_size = 5)
../_images/509d8506cef1bff1c3c21adbd595cf8a75eec780f148d7f9789cabb68ebd3064.svg

Exercise 🏛️#

  1. Compute the following centrality measures:

    • Degree centrality 🔢

    • Eigenvector centrality

    • PageRank centrality

    • Katz centrality

    • Betweenness centrality

    • Closeness centrality

  2. Plot the centrality measures on the map and see in which centrality Rome is the most important node. 🗺️🏛️ (as beautiful as possible!!)