Computing centrality with Python#
Network of university students#
Let’s compute the centrality of the network using Python igraph.
# Uncomment if you use Colab
#!pip install igraph
import igraph
names = ['Sarah', 'Mike', 'Emma', 'Alex', 'Olivia', 'James', 'Sophia', 'Ethan', 'Ava', 'Noah', 'Lily', 'Lucas', 'Henry']
edge_list = [(0, 1), (0, 2), (1, 2), (2, 3), (3, 4), (3, 5), (3, 6), (4, 5), (6, 7), (6, 8), (6, 9), (7, 8), (7, 9), (8, 9), (9, 10), (9, 11), (9, 12)]
g = igraph.Graph()
g.add_vertices(13)
g.vs["name"] = names
g.add_edges(edge_list)
igraph.plot(g, vertex_label=g.vs["name"])
igraph
offers a wide range of centrality measures as methods of the igraph.Graph
class.
Degree centrality:
igraph.Graph.degree()
Closeness centrality:
igraph.Graph.closeness()
Betweenness centrality:
igraph.Graph.betweenness()
Harmonic centrality:
igraph.Graph.harmonic_centrality()
Eccentricity:
igraph.Graph.eccentricity()
Eigenvector centrality:
igraph.Graph.eigenvector_centrality()
PageRank centrality:
igraph.Graph.personalized_pagerank()
For example, the closeness centrality is computed by
g.closeness()
[0.3,
0.3,
0.4,
0.5217391304347826,
0.36363636363636365,
0.36363636363636365,
0.5454545454545454,
0.42857142857142855,
0.42857142857142855,
0.48,
0.3333333333333333,
0.3333333333333333,
0.3333333333333333]
Computing Katz centrality#
Let’s compute the Katz centrality without using igraph. Let us first define the adjacency matrix of the graph
A = g.get_adjacency_sparse()
which is the scipy CSR sparse matrix. The Katz centrality is given by
So, how do we solve this? We can use a linear solver but here we will use a simple method:
Initialize \(\mathbf{c}\) with a random vector.
Compute the right hand side of the equation and update \(\mathbf{c}\).
Repeat the process until \(\mathbf{c}\) converges.
Let’s implement this.
import numpy as np
alpha, beta = 0.1, 0.05 # Hyperparameters
n_nodes = g.vcount() # number of nodes
c = np.random.rand(n_nodes, 1) # column random vector
for _ in range(100):
c_next = beta * np.ones((n_nodes, 1)) + alpha * A * c
if np.linalg.norm(c_next - c) < 1e-6:
break
c = c_next
print(c)
[[0.06338729]
[0.06338729]
[0.07048543]
[0.07807918]
[0.06423108]
[0.06423108]
[0.08184309]
[0.07474496]
[0.07474496]
[0.09085938]
[0.05908602]
[0.05908602]
[0.05908602]]
Does the centrality converge?
Change the hyperparameter and see how the result changes 😉 If the centrality diverges, think about why it diverges.
Hint: Katz centrality can be analytically computed by
Exercise (Optional)#
Compute the PageRank centrality of this graph
Network of ancient Roman roads#
Load the data & construct the network#
import pandas as pd
root = "https://raw.githubusercontent.com/skojaku/adv-net-sci/main/data/roman-roads"
node_table = pd.read_csv(f"{root}/node_table.csv")
edge_table = pd.read_csv(f"{root}/edge_table.csv")
The node table:
node_table.head(3)
node_id | lon | lat | |
---|---|---|---|
0 | 0 | 12.506 | 41.875 |
1 | 1 | 12.470 | 41.904 |
2 | 2 | 12.471 | 41.881 |
The edge table:
edge_table.head(3)
src | trg | |
---|---|---|
0 | 1785 | 358 |
1 | 1785 | 1771 |
2 | 1771 | 350 |
Let’s construct a network from the node and edge tables.
import igraph
g = igraph.Graph() # create an empty graph
g.add_vertices(node_table["node_id"].values) # add nodes
g.add_edges(list(zip(edge_table["src"].values, edge_table["trg"].values))) # add edges
which looks like this:
coord = list(zip(node_table["lon"].values, -node_table["lat"].values))
igraph.plot(g, layout = coord, vertex_size = 5)
Exercise 🏛️#
Compute the following centrality measures:
Degree centrality 🔢
Eigenvector centrality
PageRank centrality
Katz centrality
Betweenness centrality
Closeness centrality
Plot the centrality measures on the map and see in which centrality Rome is the most important node. 🗺️🏛️ (as beautiful as possible!!)